
CS106A
Winter 2015

Handout #24S
March 2, 2015

Section Solutions 8

import acm.program.*;
import acm.util.*;
import java.util.*;
import java.io.*;

public class FlightPlanner extends ConsoleProgram {
 /* The name of the flights file. */
 private static final String FLIGHTS_FILE = "flights.txt";

 /* The separator used to delimit the start and end of a flight. */
 private static final String FLIGHT_DELIMITER = " -> ";

 /* A map from the lower-case representation of a name to its original
 * capitalization.
 */
 private HashMap<String, String> capitalizationMap
 = new HashMap<String, String>();

 /* A map from cities to cities reachable from there. The keys in the
 * map are the lower-case representations of the city names, and the
 * values are the lowercase representations.
 */
 private HashMap<String, ArrayList<String>> flights
 = new HashMap<String, ArrayList<String>>();

 public void run() {
 /* Populate the data structures. */
 loadFlights();

 /* Find the flight path. */
 ArrayList<String> flightPath = chooseFlightPath();

 /* Display the flight path. */
 printFlightPath(flightPath);
 }

- 1 -

 /**
 * Populates the internal data structures using the flight information from the
 * file.
 */
 private void loadFlights() {
 try {
 BufferedReader br = new BufferedReader(new FileReader(FLIGHTS_FILE));

 while (true) {
 String line = br.readLine();
 if (line == null) break;

 /* If the line is nonempty, process it as a flight entry. */
 if (!line.isEmpty()) {
 processFlight(line);
 }
 }
 } catch (IOException e) {
 throw new ErrorException(e);
 }
 }

 /**
 * Given a line of the file encoding a flight, extracts the flight information
 * from that line.
 *
 * @param line The line to parse.
 */
 private void processFlight(String line) {
 /* Find where the -> in the string is, then get the source and
 * destination of the flight.
 */
 int splitPoint = line.indexOf(FLIGHT_DELIMITER);
 String source = line.substring(0, splitPoint);
 String destination = line.substring(splitPoint + FLIGHT_DELIMITER.length());

 /* If this is the first time we've seen the source, create an entry for it.
 * in our data structures.
 */
 if (!capitalizationMap.containsKey(source.toLowerCase())) {
 capitalizationMap.put(source.toLowerCase(), source);
 flights.put(source.toLowerCase(), new ArrayList<String>());
 }

 /* Add this flight. */
 flights.get(source.toLowerCase()).add(destination.toLowerCase());
 }

- 2 -

 /**
 * Prompts the user to enter a flight path, returning the ultimate path. The
 * returned path uses the lower-case representations of the city names.
 *
 * @return The chosen flight path.
 */
 private ArrayList<String> chooseFlightPath() {
 ArrayList<String> result = new ArrayList<String>();

 /* Find out where we're starting. */
 String source = chooseStartingCity();
 result.add(source);

 /* Track which city we are currently at. */
 String currentCity = source;
 while (true) {
 String nextCity = chooseNextCity(currentCity);
 result.add(nextCity);

 /* Stop if we're back where we started. */
 if (source.equals(nextCity))
 return result;

 /* Update our position. */
 currentCity = nextCity;
 }
 }

 /**
 * Prompts the user to choose a starting city, returning the city that was
 * chosen.
 *
 * @return The city that was chosen.
 */
 private String chooseStartingCity() {
 displayWelcome();

 while (true) {
 String choice = readLine("Enter the starting city: ").toLowerCase();

 /* If this is a valid city, return it. */
 if (flights.containsKey(choice))
 return choice;

 /* Otherwise, reprompt. */
 println("Sorry, that's not a valid choice.");
 }
 }

- 3 -

 /**
 * Displays a nice welcome message to the user.
 */
 private void displayWelcome() {
 println("Welcome to Flight Planner!");
 println("Here's a list of all the cities in our database: ");

 /* List all the cities that we know of. One way to do this would be
 * to iterate across the capitalization map's keys and find the
 * associated values, but since we just want the properly-capitalized
 * cities we can just iterate over the value set.
 */
 for (String city: capitalizationMap.values()) {
 println(" " + city);
 }
 }

 /**
 * Prompts the user to choose the next city in the path, which must be a city
 * that's reachable from the current city.
 *
 * @param currentCity The current city.
 * @return The next city in the path.
 */
 private String chooseNextCity(String currentCity) {
 printCitiesReachableFrom(currentCity);

 /* Get the properly-capitalized representation of the current city. */
 String printCity = capitalizationMap.get(currentCity);

 while (true) {
 String line =
 readLine("Where do you want to go from " + printCity + "? ").toLowerCase();

 /* If the city is reachable, go there. */
 if (flights.get(currentCity).contains(line)) {
 return line;
 }

 println("Sorry, you can't go there from " + printCity +".");
 }
 }

 /**
 * Lists all the cities reachable from some given city.
 *
 * @param city The city to list reachable cities from.
 */
 private void printCitiesReachableFrom(String city) {
 println("From " + capitalizationMap.get(city) + " you can go to: ");

 /* Iterate across the reachable cities. */
 for (String destination: flights.get(city)) {
 println(" " + capitalizationMap.get(destination));
 }
 }

- 4 -

 /**
 * Prints a human-readable representation of a flight path.
 *
 * @param path The flight path to display.
 */
 private void printFlightPath(ArrayList<String> path) {
 println("The route you've chosen is: ");

 /* Build up the path to display incrementally. */
 String toDisplay = "";
 for (int i = 0; i < path.size(); i++) {
 toDisplay += capitalizationMap.get(path.get(i));

 /* Insert an arrow in-between all of the cities. Be sure not to append
 * an unnecessary arrow at the end!
 */
 if (i != path.size() - 1)
 toDisplay += " -> ";
 }

 println(toDisplay);
 }
}

- 5 -

